Nitrous oxide, commonly known as laughing gas or sweet air,is a chemical compound with the formula N2O. It is an oxide of nitrogen. At room temperature, it is a colorless non-flammable gas, with a slightly sweet odor and taste. It is used in surgery and dentistry for its anesthetic and analgesic effects. It is known as "laughing gas" due to the euphoric effects of inhaling it, a property that has led to its recreational use as a dissociative anesthetic. It is also used as an oxidizer in rocketry and in motor racing to increase the power output of engines. At elevated temperatures, nitrous oxide is a powerful oxidizer similar to molecular oxygen.
Nitrous oxide gives rise to NO on reaction with oxygen atoms, and this NO in turn reacts with ozone. As a result, it is the main naturally occurring regulator of stratospheric ozone. It is also a major greenhouse gas and air pollutant. Considered over a 100 year period, it has 298 times more impact per unit weight than carbon dioxide.
The nitric oxide impurity is sometimes chelated out with ferrous sulfate, reduced with iron metal, or oxidised and absorbed in base as a higher oxide. The first base wash may (or may not) react out much of the ammonium nitrate smoke. However, this reaction generates ammonia gas, which may have to be absorbed in the acid wash.
Nitrous oxide gives rise to NO on reaction with oxygen atoms, and this NO in turn reacts with ozone. As a result, it is the main naturally occurring regulator of stratospheric ozone. It is also a major greenhouse gas and air pollutant. Considered over a 100 year period, it has 298 times more impact per unit weight than carbon dioxide.
Production
Nitrous oxide is most commonly prepared by careful heating of ammonium nitrate, which decomposes into nitrous oxide and water vapor. The addition of various phosphates favors formation of a purer gas at slightly lower temperatures. One of the earliest commercial producers was George Poe in Trenton, New Jersey.
- NH4NO3 (s) → 2 H2O (g) + N2O (g)
This reaction occurs between 170 and 240 °C, temperatures where ammonium nitrate is a moderately sensitive explosive and a very powerful oxidizer. Above 240 °C the exothermic reaction may accelerate to the point of detonation, so the mixture must be cooled to avoid such a disaster. Superheated steam is used to reach reaction temperature in some turnkey production plants.
Downstream, the hot, corrosive mixture of gases must be cooled to condense the steam, and filtered to remove higher oxides of nitrogen. Ammonium nitrate smoke, as an extremely persistent colloid, will also have to be removed. The cleanup is often done in a train of 3 gas washes; namely base, acid and base again. Any significant amounts of nitric oxide (NO) may not necessarily be absorbed directly by the base (sodium hydroxide) washes.The nitric oxide impurity is sometimes chelated out with ferrous sulfate, reduced with iron metal, or oxidised and absorbed in base as a higher oxide. The first base wash may (or may not) react out much of the ammonium nitrate smoke. However, this reaction generates ammonia gas, which may have to be absorbed in the acid wash.